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Domain wall formation in the Cahn-Hilliard-Cook equation
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Formation of domain walls during phase-separating transition in the Cahn-Hilliard-Cook equation is studied.
Density of domain wall scales like a sixth root of quench rate for equal concentrations and like a square root
of quench rate for unequal concentrations of components. For a slow inhomogeneous transition, the density is
linear in a velocity of temperature front.
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I. INTRODUCTION

We address the question of domain wall formation dur
a phase-separating transition in binary systems with c
served order parameter. Studies of defect formation durin
rapid phase transition were initiated in the context of cosm
ogy. It has been pointed out that topological defects t
formed during subsequent symmetry breaking phase tra
tions could provide seeds for structure formation in the ea
universe. Kibble@1# gave a detailed theory of defect form
tion in first-order phase transitions that proceed by bub
nucleation and general geodesic argument that relates de
of topological defects to the density of domains with diso
ented order parameter. The theory was supplemented
Zurek @2# with a scenario for second-order transitions. T
second-order transitions proceed by spinodal decomposi
The slower the rate of the transition, the longer is the ch
acteristic length scale frozen into the system after
quench. Kibble-Zurek~KZ! scenario was tested in a numb
of condensed-matter experiments@3#.

In cosmological transitions, the order parameter is not
pected to be conserved. That is why defect formation in tr
sitions with conserved order parameter was not studied in
cosmological context. However, order parameter is c
served in a wide class of systems such as binary alloys,
polymers, and binary fluids and the phase-separating tra
tion in these systems is of second order. It turns out that
equal concentrations of the binary components the densit
defects can be predicted by an argument that is a direct
eralization of the KZ argument. The scaling between
transition rate and the characteristic length turns out to
different than that for a nonconserved order parameter.
qualitative similarity between conserved and nonconser
cases for equal concentrations suggest the binary system
another experimental testing ground for the KZ paradigm

The order parameter conservation introduces phenom
that are interesting in their own right. They show up wh
the two components of the binary mixture differ in conce
tration. This difference of concentrations translates into
nonzero average order parameter. In this case, defect fo
tion can be divided into two stages. The first stage is ag
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well described by the KZ scenario. KZ mechanism predict
characteristic length scale frozen into the fluctuations aro
the biased nonzero order parameter. In the second sta
selection of domains takes place such that in the end
obtains bubbles of the minority phase scattered in the ma
ity phase. The size of the bubbles is determined by the
length scale but the density of the bubbles scales wit
different exponent than the KZ length scale. This discre
ancy is necessary to conserve the order parameter.

As we will discuss in some detail in Sec. V, hydrod
namic effects are irrelevant for the formation of initial d
mains during the transition. Hydrodynamics can step in la
on during subsequent phase ordering kinetic process. In
paper we predict the initial density of domain wall just aft
the transition but before the phase ordering kinetics steps
When we neglect hydrodynamic flows, then the dynamics
phase separation can be described by the celebrated C
Hilliard-Cook equation~CHCE! for conserved real order pa
rameterf

ḟ5¹2@2e~ t,xW !f1f32¹2f#1¹W jW , ~1!

where an overdot5] t . We allow for variation of the sym-
metry breaking parametere ~temperature/pressure! both in
space and in time.jW is assumed to be a vector of whit
Gaussian noises with correlators

^ja~ t,xW !&50,

^ja~ t1 ,xW1!jb~ t2 ,xW2!&52Tdabd~ t12t2!d~xW12xW2!, ~2!

where the indicesa,b run from 1 to the number of spatia
dimensionsd.

II. TRANSITION WITH EQUAL CONCENTRATIONS

To begin with let us consider a uniform linear phase tra
sition with

e~ t,xW !5
t

t
, ~3!

with f50 on average at the initialt52`, which is pre-
served by CHCE evolution. Any uniform transition close
the critical point ate50 can be described by such a linea
ized e(t).
©2001 The American Physical Society12-1
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For t,0, the system is in a symmetric phase;f is subject
to small fluctuations around 0. For this stage of the que
and also for the onset of spinodal instability, just aftere
crossed 0, Eq.~1! can be linearized inf,

ḟ5F2
t

t
13^f2&G¹2f2¹4f1¹jW . ~4!

The mean-field̂ f2& is kept just to control validity of the
linearization. We solve Eq.~4! by neglecting the mean-field
term and performing Fourier transformation

f~ t,xW !5E
2`

1`

dkWeikWxWf~ t,kW !. ~5!

The Fourier transformed linearized equation~4! is

ḟ~ t,kW !5
t

t
k2f~ t,kW !2k4f1 ikWjW~ t,kW !. ~6!

Even before we proceed with a formal solution, we can g
an intuitive Kibble-Zurek-like argument to estimate the ch
acteristic length scale after the quench. All the Fourier mo
fluctuating according to Eq.~6! are stable as long ast,0.
For t.0, long-wavelength modes become unstable and t
begin to grow exponentially. The time scaletk for this ex-
ponential growth of the modekW follows from Eq.~6!,

1

tk
5

t

t
k22k4. ~7!

We are interested in smallk, where tk is positive. tk

is minimal and the instability is the strongest forkt
25t/2t.

The minimal tk is t t54t2/(t2). The fluctuations begin to
blow up exponentially at timet̂;t2/3 when t t̂; t̂ . At t̂ the
instability is the strongest for the modes withk̂;1/t1/6 that
define a characteristic length scale

ĵ;t1/6. ~8!

This length scale dominates the exponentially growing fl
tuations when they enter the nonlinear regime around
time t̂ . At t̂ the width of the domain wall~the healing length!
is also proportional tot1/6, compare Eq.~1!, so theĵ;t1/6 is
the only relevant length scale. In the nonlinear regime,
fluctuations saturate in the form of positive-f and negative-
f domains separated by domain walls.ĵ determines the av
erage size of the domains and the density of domain wa

We will confirm this prediction by a more detailed calc
lation. Equation~6! can be solved for anykW with the help of
its Green function and the correlations~2!. The ‘‘power spec-
trum’’ P(t,kW ) of the fluctuations is

^f!~ t,kW !f~ t,pW !&[P~ t,kW !d~kW2pW !,

P~ t,kW !5
TAtk

p
ek2(t2tk2)2/tE

2`

k(t2tk2)/At
dse2s2

. ~9!
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The fluctuations, measured by^f2&5*dkW P(t,kW ), are small
for t,0. Fort.0, they start to blow up exponentially and
t̂.0, the linear approximation involved in solving Eq.~4!
breaks down,

3^f2&[3E dkW P~ t̂ ,kW !'
t̂

t
. ~10!

For t.0 and sufficiently large the error function integral
Eq. ~9! is constant for smallk2 ~but it is still essential to
suppress the divergence for largek2). The remaining expo-
nent is peaked atk2't/3t with a maximum of exp(4t3/27t2).
This maximum begins to blow up att̂;t2/3. It is around this
time that 3̂ f2& passes throught/t and the linear approxi-
mation in Eq.~4! breaks down: domain walls of width;t1/6

begin to form. Fluctuations with wavelengths shorter th
the domain wall width, ork. k̂5t21/6, are irrelevant for
domain wall formation. Density of domain wall that are g
ing to form can be identified with the density of zeros
f( t̂ ,xW ) smoothed overk. k̂, which is, according to a for-
mula from @4#,

n5
p

2AE
k, k̂

dkWk2P~ t̂ ,kW !

E
k, k̂

dkW P~ t̂ ,kW !

. ~11!

If we draw a straight line through the system, this formu
tells us how often the line crosses a domain wall. After
troducing an integration variablekW / k̂ one can see that anyt
dependence can be factorized in front of the integrals so

n;
1

t1/6
~12!

for any t.
We performed numerical simulations in one spatial

mension of the fully nonlinear Eqs.~1!, ~2!, and ~3!. The
density of kinks and antikinks is consistent with the pred
tion ~12! ~compare Fig. 1!.

In the limit of adiabatic transition,t→`, the system stays
close to the critical point for a time long enough to coarsen
long distance. For a fast quench, substantial amount of in
disorder is frozen into the ordered phase in the form of
main walls. In one dimension, the domain walls~kinks! are
permanent records of the transition in a sense that k
antikink pairs coarsen only logarithmically with time@6#. In
more than one dimension, Eq.~12! gives an initial density of
domain wall that is later gradually eradicated by phase
dering kinetics.

III. TRANSITION WITH UNEQUAL CONCENTRATIONS

A. Transition through spinodal decomposition

The two phase-separating phases may differ by aver
concentration. In that case the average conservedf is M
Þ0. We takeM.0 for definitness. The mixed phase is
uniform f5M plus small fluctuations driven by noise. Th
2-2
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phase is stable fore,0. As the system is driven through th
transition,e increases and eventually becomes positive. U
like for M50 ~see Sec. II!, the uniform f5M remains
stable in a range ofe.0.

According to Eq.~1!, for e.0, the field f lives in a
double-well potential

V~f!52
e

2
f21

1

4
f4. ~13!

As we can find by linearizing this potential for small flu
tuations around the uniformf5M , f5M configuration is
stable whene,3M2. For f5M to be stable,M has to lie
outside the two inflection pointsf56Ae/3 of the double-
well potentialV(f), whereV(f) is a convex function. In the
process of the quench,e(t) increases. The system enters t
transition in a state of uniformf5M with small fluctuations
on top of it that are driven by noise. As long ase,3M2, the
uniform f5M is stable against small perturbations.

Whene crosses 3M2, the long wavelength modes becom
unstable in a very similar way as forM50. For any smooth
quench,e(t) can be linearized around 3M2 as

e~ t !53M21t/t. ~14!

At the same time we can expand

f~ t,xW !5M1f̃~ t,xW ! ~15!

for any small fluctuation fieldf̃(t,xW ). Equation ~1! when
linearized inf̃ gives

ḟ̃52
t

t
¹2f̃2¹4f̃1¹jW , ~16!

FIG. 1. log10(n) as a function of log10(t) for M50 ~the top
plot! and forM52 ~the bottom plot! according to numerical simu
lations. ForM50, the slope is 0.1860.01 as compared to the the
oretical 1/6'0.17. ForM52, the slope saturates for log10(t).2 at
0.4860.05 as compared to the theoretical 0.50. At lowt, the M
50,2 results tend to be the same. Vertical size of a point is
statistical error. Simulations were done atT51025 on a Dx51,
Dt50.01 lattice of size 1024 with periodic boundary condition
e(t) was swept from 3M2210t21/3 to 3M2110t21/3. Kinks were
counted at final time. Densityn is an average over many runs.
03611
-

which is formally the same as Eq.~4!. Because of this forma
similarity, the length scaleĵ;t1/6 frozen into the exponen
tially blowing up fluctuations is the same as forM50. How-
ever, unlike forM50 this is not the end of the story.

At t̂ , the fluctuationsf̃ aroundf5M have a characteris
tic length scaleĵ. f̃( t̂ ,xW ) can be seen as a mosaic of positi
f̃ and negativef̃ ‘‘domains’’ with a characteristic volume
of ĵd. f̃ in these domains is very small; it is far from sat
ration, so the domains are just potential seeds for fu
fledged domains with large saturated order parameter
there were nof conservation, thenf̃ in these6seeds would
quickly grow until it crossed the positive/negative inflectio
point of the potentialV(f). After that, the growth would
slow down becauseV(f) is convex beyond its inflection
points. The domains would gradually saturate with theirf ’s
close to the minima ofV(f). However, such an unbiase
pattern of positive and negative domains would havef50
on average, which is not consistent with the initialf5M .

The solution to this problem is thatf̃ in some~not suffi-
ciently! negative seeds will not manage to hop to the ne
tive inflection point. They will go to the positive inflection
point. A fractionq of negative seeds that will grow negativ
can be estimated as follows: A fractionq of negative seeds
ends at the negative inflection point wheref
'2AM211/3t1/3 at t' t̂ . The fraction 1 of the positive
seeds and a fraction (12q) of the negative seeds will end a
the positive inflection point wheref'1AM211/3t1/3. To
keep the finalf5M on average,q must satisfy

M5
2q1@11~12q!#

2
AM21

1

3t1/3
. ~17!

For M2t1/3@1 we obtainq;1/M2t1/3. Given that the aver-
age linear size of the seeds isĵ the average linear density o
domain walls~defined by the average density of intersectio
between a strait line and domain walls! should scale likeq/ ĵ,

n;q/ ĵ;
1

M2t1/2
for M2t1/3@1. ~18!

This 1/2 exponent is three times bigger than the 1/6 in
~12! so it should be much more easily measured in exp
ment.ĵ is not forgotten by the final configuration because t
negative domains areĵ-sized islands in the positive sea.

Fully nonlinear numerical simulations in one spatial d
mension are consistent with the exponent 1/2 as show
Fig. 1. The initial ĵ-sized seeds and the two final negati
ĵ-sized domains are shown in Fig. 2.

B. Transition through bubble nucleation

The uniformf5M is stable against small perturbation
as long ase,3M2. However, already fore.M2, f5M is
between the two minima6Ae of the double-well potential
V(f). For M2,e,3M2 the uniformf5M is metastable:

s

.

2-3
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f conservation does not forbid its decay into a nonunifo
configuration with negative bubbles scattered in the posi
phase. The decay can in principle proceed by nucleatio
bubbles of the negative phase. The nucleation is most lik
to occur in one spatial dimension. Therefore, we restrict
analysis to one dimension where the bubble is an antik
kink pair ~AKP!.

First of all we will estimate the minimal temperatureT
necessary to nucleate an AKP. The effective potentialV(f)
can be approximated for small fluctuations aroundf5M by
1
2 «f̃2, where «5e23M2. Magnitude of the fluctuations
aroundM is given by^f̃2&;T/Au«u. The fluctuations around
f5M can result in AKP nucleation if they can reach beyo

the positive inflection point atf5A(3M21«)/3 or

S M2AM21
«

3D 2

'^f̃2&. ~19!

To first order inu«u/M2 nucleation can take place for«.
2(TM2)2/5[2«n . According to this estimate, nucleatio
becomes possible whene(t) in Eq. ~14! is approaching the
critical 3M2 from below.

In fast transitions there may be not enough time for
nucleation to actually happen. We will estimate the nuc
ation time as follows. The CHC equation at«52«n can be
approximated by

] tf̃52¹4f̃1en¹2f̃1¹W jW . ~20!

The relaxation time atkn5A«n, which corresponds to the
correlation length, is;«n

22 . «n
22 is the time scale for AKP

nucleation whene53M22«n . At a later time ande closer
to the critical 3M2 the nucleation time is longer. If the nucle
ation time«n

22 is longer than the time«nt remaining to the
transition @the time e(t) needs to grow from 3M22«n to
3M2#, then there is not enough time for any AKP’s nucl
ation. This condition is satisfied when

t~TM2!6/5!1. ~21!

FIG. 2. Two snapshots off as a function ofx for M52,t
5128, andT51025 taken from numerical simulations. The thi

line is f at t50.8t̂ when spinodal decomposition begins~the am-
plitude of fluctuations aroundM52 is magnified 100 times!. The

thick line is f at t51.6t̂ when kinks are already well defined.
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If the transition is fast enough orT is sufficiently small, then
no AKP are nucleated whileM2,e(t),3M2 andf remains
fluctuating around uniformf5M until e(t) crosses 3M2. If
the condition~21! is satisfied, then the transition proceeds
spinodal decomposition and results with negativeĵ-sized
bubbles. If the opposite condition holds, then the outcom
a finite density of negative bubbles with a size independ
on t.

It is known that many-kink effects can play a role in AK
nucleation@5#. In our case these effects are irrelevant b
cause we study nucleation from a uniformf5M phase,
which is initially free of any kinks.

IV. INHOMOGENEOUS TRANSITION

A uniform phase transition~3! may be a good first ap
proximation in some cases but in real life we often have
face the fact that it is not perfectly homogeneous. To g
some insight, let us begin with the temperature front of
form

e~ t,x!5H 1e2 , x,vt

2e1 , vt,x,
~22!

in the limit of very slowv. We will arguea posteriori that
the sharp step is a good approximation of any generic fr
for v→0.

We solve the problem of kink generation behind the mo
ing front by perturbative expansion aroundv50. At v50
there is a staticf front, f(x)5H(x)—a step inf at x'0
interpolating between2Ae2 at x52` and 0 atx51`. Its
width is proportional toe2

21/21e1
21/2.

Let us now switch on a smallv.0. Thee front Eq. ~22!
is slowly moving on. Iff were not conserved, thef front
would follow moving in step withe front leaving no kinks
behind @7#. For our conservedf this is not possible, kinks
must inevitably appear. To see in detail how it happens,
us substitutef(t,x)5H(x2vt)1c(t,x) with c5O(v) to
Eq. ~1! and keep onlyO(v) terms. We are interested in larg
length scales as compared to the width of the stepH(x) and
that of thee front. That is why we keep only up to the secon
x derivative, which is responsible for diffusion. Far fromx
'vt we obtain

ċ~ t,y!5e1c9~ t,y!1vc8~ t,y!1vAe1

2
u~ t !d~y!,

~23!

wherey5x2vt. We take into account ad-like source term
at y50 that is a long-wavelength approximation tovH8. We
also set e25e1/2 for simplicity. The source term is
switched on att50 when thee front starts to move, hence
the Heaviside function. The solution of Eq.~23! is straight-
forward,

c~ t,y!5vAe1

2 E
0

t

dt8
exp~2@y1v~ t2t8!#2/4e1~ t2t8!!

A4pe1~ t2t8!
.

~24!
2-4
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The source term producesc at y50 at a constant rate. I
spreads around by diffusion but at the same time it is car
to negativey with velocity 2v. For y.0, the diffusion
dominates at first but atv2t2;e1t the two processes balanc
one another andc(t,y.0) saturates. From this time on a
thec is carried directly from the source toy,0 with veloc-
ity 2v. This means that thef front is halted, while thee
front keeps moving on. A supercooled phase with a sligh
positive f is growing in between them with velocityv.
When its width exceedsA2/e1, f decays towards positive
ground state. From this time on, we have a negativef step
moving together withe step and the whole story repea
itself at spatial intervals ofe1 /v. Density of kinks is

n;
v

e1
for v→0. ~25!

It should be stressed that the whole process is determini
kinks are made at regular intervals. Noise is required to
gin the process; it also adds some irregularity on top of
regular pattern.

Note that for smallv, the relevant length scale ise1 /v.
For small enoughv, it far exceeds thee-front width and the
width of H(x). This justifies the sharp step in Eq.~22! and
the long-wavelength approximations involved in our deriv
tion of Eq. ~23!.

Let us now turn to the opposite large-v limit where we
anticipate the transition to be effectively homogeneous. A
generice(t,x) can be linearized arounde50,

e~ t,x!5
vt2x

vt
[a~vt2x!. ~26!

At any fixedx, the transition proceeds at the rate of 1/t just,
as in Eq.~3!. If it were homogeneous it would enhance t
momentumk̂5t21/6. For

v@a5 or v@t25/6, ~27!

this momentum scale is much bigger than the slopea and the
relevant field fluctuations do not feel the inhomogene
This is where the transition is effectively homogeneous a
Eq. ~12! applies.

V. CONCLUDING REMARKS

Our calculations predict domain wall density at the end
the spinodal decomposition stage. This is the initial den
for phase-ordering kinetics~POK! process described in Re
@8#.

For binary fluids in more than one dimension hydrod
namic processes are known to be important for pha
ordering kinetics, see, e.g.,@9#. Hydrodynamics can be intro
duced by coupling the CHCE to the Navier-Stokes equa
~NSE! plus the incompressibility condition,¹vW 50. Order
parameter fluctuations induce hydrodynamic flows. It has
be kept in mind that before the spinodal decomposit
03611
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blows up, the fluctuations are small. According to NSE, t
induced velocity is formally proportional to the fluctuatio
squared. When this velocity is substituted back to CHCE
gives a term that is formally cubic in order parameter flu
tuations. This term has the same formal order of magnit
as the usual nonlinear term in our Eq.~1!. For the same
reasons it can be neglected at the onset of the spinoda
composition. If the viscosity of the fluid is large, then th
usual cubic term dominates. The domain wall structure at
end of spinodal decomposition is the same as if there w
no hydrodynamic flows at all. If, on the other hand, viscos
is small, then the ‘‘hydrodynamic’’ cubic term is the dom
nant one. It halts the spinodal decomposition somewhat
lier than it would be halted by the standard nonlinearity. T
can give only negligible logarithmic corrections tok̂ because
t̂ @see Eq. ~10!#, is the time of the double exponentia
blow-up in the power spectrum of Eq.~9!. The ordered do-
mains at the end of the spinodal decomposition, att̂ , are
metastable@10#. 1/k̂ gives the initial size of the domains i
this metastable state. In both large and small viscosity lim
the correlations at the end of spinodal decomposition st
are determined byk̂. Hydrodynamics is irrelevant when ini
tial density of domain walls is considered.

Hydrodynamics is even less relevant in an effective
one-dimensional binary fluid system. This limit can b
achieved for binary fluids trapped in a thin tube whose
ameter is less than 1/k̂. In one dimension the incompressibi
ity condition ¹vW 50 makes impossible any nontrivial flow
and the model reduces to just CHCE.

In one dimension, kinks can be thermally activated at
bitrarily low temperatures. Still, our scaling relations hold
the freeze-out att̂ takes place outside the Ginzburg regim
where the thermal kink nucleation is exponentially su
pressed. If the freeze-out happens above the Ginzburg
perature, then there is possibility of crossover:ĵ does not
diverge witht→` but saturates at a finite value. This case
interesting in its own right but requires further investigatio

It should be possible to test our prediction in a tw
dimensional experiment. In fact, most of the experimen
work on POK in binary fluids was done in two dimensio
~2D!. In 2D it may be difficult to distinguish between spin
odal decomposition stage and POK stage. However, the s
ing exponents for early POK are known and can be use
extrapolate the length scale back tot̂ . An extrapolation like
this was used in numerical simulations of vortex formation
2D, see Fig. 3 in Ref.@11#.
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