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Domain wall formation in the Cahn-Hilliard-Cook equation
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Formation of domain walls during phase-separating transition in the Cahn-Hilliard-Cook equation is studied.
Density of domain wall scales like a sixth root of quench rate for equal concentrations and like a square root
of quench rate for unequal concentrations of components. For a slow inhomogeneous transition, the density is
linear in a velocity of temperature front.
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I. INTRODUCTION well described by the KZ scenario. KZ mechanism predicts a
characteristic length scale frozen into the fluctuations around
We address the question of domain wall formation duringthe biased nonzero order parameter. In the second stage a
a phase-separating transition in binary systems with conselection of domains takes place such that in the end one
served order parameter. Studies of defect formation during @btains bubbles of the minority phase scattered in the major-
rapid phase transition were initiated in the context of cosmolity phase. The size of the bubbles is determined by the KZ
ogy. It has been pointed out that topological defects thatength scale but the density of the bubbles scales with a
formed during subsequent symmetry breaking phase transflifferent exponent than the KZ length scale. This discrep-
tions could provide seeds for structure formation in the earlyanCy is necessary to conserve the order parameter.
universe. Kibblg1] gave a detailed theory of defect forma- ~ As we will discuss in some detail in Sec. V, hydrody-
tion in first-order phase transitions that proceed by bubb|é1amiC effects are irrelevant for the formation of initial do-
nucleation and general geodesic argument that relates densfijains during the transition. Hydrodynamics can step in later
of topological defects to the density of domains with disori-on during subsequent phase ordering kinetic process. In this
ented order parameter. The theory was Supp|emented per we predict the initial density of domain wall just after
Zurek [2] with a scenario for second-order transitions. Thethe transition but before the phase ordering kinetics steps in.
second-order transitions proceed by spinodal decompositiofVhen we neglect hydrodynamic flows, then the dynamics of
The slower the rate of the transition, the longer is the charPhase separation can be described by the celebrated Cahn-
acteristic length scale frozen into the system after thelilliard-Cook equationfCHCE) for conserved real order pa-
quench. Kibble-ZurekKKZ) scenario was tested in a number rameterg
of condensed-matter experimeh§. L w2r > 3 v2 32
In cosmological transitions, the order parameter is not ex- $=VI0-e(tx)pt+ "=V + Ve, @

pected to be conserved. That is why defect formation in trangshere an overdet,. We allow for variation of the sym-
sitions with conserved order parameter was not studied in thgetry breaking parameter (temperature/pressyréoth in

ggf\ggl?r?';a\:viggnégg's ;Oswgeer;’sosrgfr: ;Sa[)ailrrgerte;”lj Scog'space and in timeé is assumed to be a vector of white
y M ¥S, CR5aussian noises with correlators

polymers, and binary fluids and the phase-separating transi-

tion in these systems is of second order. It turns out that for (£3(t,%))=0,

equal concentrations of the binary components the density of R . L

defects can be predicted by an argument that is a direct gen-  (£3(t1,X1) €2(t5, X)) = 2T 58(t; — 1) (X1 —Xp),  (2)

eralization of the KZ argument. The scaling between the o ,

transition rate and the characteristic length turns out to b&/here the indices,b run from 1 to the number of spatial

different than that for a nonconserved order parameter. Theimensionsd.

gualitative similarity between conserved and nonconserved

cases for equal concentrations suggest the binary systems as!l.- TRANSITION WITH EQUAL CONCENTRATIONS

another experimental testing ground for the KZ paradigm.

The order parameter conservation introduces phenomer&i

that are interesting in their own right. They show up when

the two components of the binary mixture differ in concen-

tration. This difference of concentrations translates into a

nonzero average order parameter. In this case, defect forma-

tion can be divided into two stages. The first stage is agaimvith ¢=0 on average at the initial= —cc, which is pre-
served by CHCE evolution. Any uniform transition close to
the critical point ate=0 can be described by such a linear-

*Email address: dziarmaga@t6-serv.lanl.gov ized e(t).

To begin with let us consider a uniform linear phase tran-
on with

e(t,k’):t;, ()
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Fort<O0, the system is in a symmetric phageis subject
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The fluctuations, measured Ky?)=[dkP(t,k), are small

to small fluctuations around 0. For this stage of the quenclor t<0. Fort>0, they start to blow up exponentially and at

and also for the onset of spinodal instability, just after
crossed 0, Eq(l) can be linearized irp,

b= V2p—V4p+VE. (4)

s

The mean-field ¢2) is kept just to control validity of the
linearization. We solve Edq4) by neglecting the mean-field
term and performing Fourier transformation

- o - T -
¢(nx)=_f dke™ ¢ (t,k). (5)
The Fourier transformed linearized equatidi is
R | - .
d(t,k)= ;k2¢(t,k)—k4¢>+ iké&(tk). (6)

Even before we proceed with a formal solution, we can giv

e

t>0, the linear approximation involved in solving E@t)
breaks down,

3(¢%)=3 f dkP(t,k)~ - (10)
For t>0 and sufficiently large the error function integral in
Eq. (9) is constant for smalk? (but it is still essential to
suppress the divergence for larg®. The remaining expo-
nent is peaked &?~t/3r with a maximum of exp(&/2772).

This maximum begins to blow up at- 722, It is around this
time that 3 ¢?) passes through/ and the linear approxi-
mation in Eq.(4) breaks down: domain walls of width 76
begin to form. Fluctuations with wavelengths shorter than
the domain wall width, otk>k=7"15, are irrelevant for
domain wall formation. Density of domain wall that are go-
ing to form can be identified with the density of zeros of
#(t,x) smoothed ovek>k, which is, according to a for-
mula from[4],

an intuitive Kibble-Zurek-like argument to estimate the char-
acteristic length scale after the quench. All the Fourier modes
fluctuating according to Eq6) are stable as long &s<0.
Fort>0, long-wavelength modes become unstable and they
begin to grow exponentially. The time scadg for this ex-

ponential growth of the modlk follows from Eq.(6),

jAdwwaﬁ>
k<k

NI

n= (11
dkP(t,k)

k<k

If we draw a straight line through the system, this formula

tells us how often the line crosses a domain wall. After in-

troducing an integration variabldk one can see that any
dependence can be factorized in front of the integrals so that

1

n ~ —
Tl/6

1

Tk

e )
-

We are interested in smakl, where 7, is positive. 7

is minimal and the instability is the strongest fir=t/2.

The minimal 7 is 7,=47%/(t%). The fluctuations begin to

blow up exponentially at timé~ 723 when r;~t. At t the

instability is the strongest for the modes with- 1/7/° that
define a characteristic length scale

(12

for any 7.

We performed numerical simulations in one spatial di-
mension of the fully nonlinear Eq$l), (2), and (3). The
density of kinks and antikinks is consistent with the predic-
tion (12) (compare Fig. L
This length scale dominates the exponentially growing fluc- In the limit of adiabatic transition;— o, the system stays
tuations when they enter the nonlinear regime around thelose to the critical point for a time long enough to coarsen at
timet. At t the width of the domain wallthe healing length  long distance. For a fast quench, substantial amount of initial
is also proportional ta/%, compare Eq(1), so thet~ 78 is disorder is frozen into the ordered phase in the form of do-

the only relevant length scale. In the nonlinear regime, thdn@n walls. In one dimension, the domain walkénks) are
fluctuations saturate in the form of positigeand negative- P€rmanent records of the transition in a sense that kink-

. . o . antikink pairs coarsen only logarithmically with tinié]. In
¢ domqlns separated by domain wa&sdgtermlnes the V" more than one dimension, E{.2) gives an initial density of
erage size of the domains and the density of domain walls

We will confirm this prediction by a more detailed calcu- domain wall that is later gradually eradicated by phase or-

] : L dering kinetics.
lation. Equation(6) can be solved for anlg with the help of
its Green function and the correlatiof®. The “power spec-

trum” P(t,k) of the fluctuations is

(¢*(t,K) #(t,p))=P(t,k) 8(k—p),

f"’ ’Tl/6

)

IIl. TRANSITION WITH UNEQUAL CONCENTRATIONS
A. Transition through spinodal decomposition

The two phase-separating phases may differ by average
concentration. In that case the average consegved M
#0. We takeM >0 for definitness. The mixed phase is a
uniform ¢=M plus small fluctuations driven by noise. This

. Ty7k k(t—7Kk3)/ V7
P(t,k):%ekz(trkz)zlrf T s )

—o0
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which is formally the same as E@l). Because of this formal

similarity, the length scalé~ 7/¢ frozen into the exponen-
tially blowing up fluctuations is the same as fdr=0. How-
ever, unlike forM =0 this is not the end of the story.

At t, the fluctuationsp around¢=M have a characteris-
tic length scaleé. $(t,x) can be seen as a mosaic of positive
$ and negativep “domains” with a characteristic volume

of 9. $ in these domains is very small; it is far from satu-
175} ration, so the domains are just potential seeds for fully
fledged domains with large saturated order parameter. If

there were nap conservation, theg in these=+ seeds would
1 2 3 s quickly grow until it crossed the positive/negative inflection
point of the potentialV(¢). After that, the growth would
plot) and forM =2 (the bottom plot according to numerical simu- SIO.W down becau_se/(qb) is convex beyond its _|aneCt.|on
lations. ForM =0, the slope is 0.180.01 as compared to the the- points. The domglns would gradually saturate with tlﬁs
oretical 1/6=0.17. ForM =2, the slope saturates for Iggr)>2 at close to the minima oV(¢). .However,. such an unbiased
0.48+0.05 as compared to the theoretical 0.50. At lopthe M Pattern of positive and negative domains would have0
=0,2 results tend to be the same. Vertical size of a point is it @verage, which is not consistent with the iniigakM.
statistical error. Simulations were done Bt10° on aAx=1, The solution to this problem is that in some(not suffi-
At=0.01 lattice of size 1024 with periodic boundary conditions. ciently) negative seeds will not manage to hop to the nega-
e(t) was swept from 812—107~ 3 to 3M?+ 107 ' Kinks were tive inflection point. They will go to the positive inflection
counted at final time. Density is an average over many runs. point. A fractionqg of negative seeds that will grow negative

can be estimated as follows: A fractignof negative seeds

phase is stable foe<<0. As the system is driven through the ends at the negative inflection point wherep

transition, e increases and eventually becomes positive. Un-« _ /21 1/3;73 at t~{. The fraction 1 of the positive
like for M=0 (see Sec. )i the uniform ¢=M remains  geeds and a fraction (1q) of the negative seeds will end at
stable in a range o> 0. the positive inflection point wheré~ +\M?+1/3r73. To

According to Eq.(1), for €>0, the field ¢ lives in a keep the finakb=M on averageq must satisfy
double-well potential

1 —q+[1+(1-q) 1
V(g)=— 547+ 74" (19 m= ‘”\/Mu;m. 17

As we can find by linearizing this potential for small fluc- For M27Y3>1 we obtaing~ 1/M?73, Given that the aver-

tuations around thg uniforp=M, ¢=M configuration is 44 |inear size of the seedséihe average linear density of
stable whene<3M*. For ¢=M to be stableM has to lie  jomain wallsdefined by the average density of intersections

outside the two inflection pointg= = /e/3 of the double- . : o
well potentialV(¢), whereV(¢) is a convex function. In the between a strait line and domain waltould scale likey/,

process of the quencl(t) increases. The system enters the 1
transition in a state of uniforrh=M with small fluctuations n~q/§~ — for M2/ 31, (18
on top of it that are driven by noise. As long as 3M?, the M2712
uniform ¢=M is stable against small perturbations.

Whene crosses 812, the long wavelength modes become This 1/2 exponent is three times bigger than the 1/6 in Eq.
unstable in a very similar way as fd =0. For any smooth (12) so it should be much more easily measured in experi-
quench,e(t) can be linearized around\8” as ment.£ is not forgotten by the final configuration because the

e(t)=3M2+t/7. (14) negative domalns ar&smgd |slgnds in the_ positive sea.
Fully nonlinear numerical simulations in one spatial di-
mension are consistent with the exponent 1/2 as shown in

Fig. 1. The initial £-sized seeds and the two final negative

FIG. 1. logg(n) as a function of logy(7) for M=0 (the top

At the same time we can expand

H(t,X) =M+ d(t,X) (15) ¢-sized domains are shown in Fig. 2.
for any small fluctuation fieldp(t,x). Equation(1) when B. Transition through bubble nucleation
linearized ing gives The uniform¢=M s stable against small perturbations
as long as=<3M?2. However, already foe>M?, ¢=M is
~ t_ o~ ~ oz between the two minima: \/e of the double-well potential
- _V2G_y4 potentia
¢ TV =V tVe, (16) V(¢). For M?< e<3M? the uniform¢=M is metastable:
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3 PN If the transition is fast enough dris sufficiently small, then

\/ r no AKP are nucleated whilb12< e(t) <3M?2 and ¢ remains
2} \/\// fluctuating around uniforngp=M until €(t) crosses 812. If

the condition(21) is satisfied, then the transition proceeds by

spinodal decomposition and results with negatésized
0 5 30 0 = 0 bubbles. If the opposite _condition hold_s, ther_l the_ outcome is
| a finite density of negative bubbles with a size independent
on 7.
ot It is known that many-kink effects can play a role in AKP
nucleation[5]. In our case these effects are irrelevant be-
-3t cause we study nucleation from a uniforg=M phase,
_al LJ J which is initially free of any kinks.
FIG. 2. Two snapshots 0@ as a function ofx for M=2,1 IV. INHOMOGENEOUS TRANSITION
=128, andT=10"° taken from numerical simulations. The thin
line is ¢ att=0.8 when spinodal decomposition begittae am- A uniform phase transitiort3) may be a good first ap-
plitude of fluctuations aroun¥ =2 is magnified 100 timgsThe ~ Proximation in some cases but in real life we often have to
thick line is ¢ att=1.6t when kinks are already well defined. face the fact that it is not perfectly homogeneous. To gain
some insight, let us begin with the temperature front of the
¢ conservation does not forbid its decay into a nonuniform©mM
configuration with negative bubbles scattered in the positive te . x<ut
phase. The decay can in principle proceed by nucleation of e(t,x)= (22)
bubbles of the negative phase. The nucleation is most likely —€y, V<X,

to occur in one spatial dimension. Therefore, we restrict our o . o
analysis to one dimension where the bubble is an antikinkin the limit of very slowv. We will arguea posteriorithat

kink pair (AKP). the sharp step is a good approximation of any generic front
First of all we will estimate the minimal temperatufe for v—0. . _ .
necessary to nucleate an AKP. The effective poteM{ap) We solve the problem of kink generation behind the mov-

can be approximated for small fluctuations arouned M by  ing front by perturbative expansion aroune=0. At v=0
1532, where s=e—3M2. Magnitude of the fluctuations there is a statie front, ¢(x)=H(x)—a step in¢ atx~0

aroundM is given by($?)~T//[[. The fluctuations around interpolating betweerr Ve _ atx=— and 0 at=+=. Its

: ; ; -1/2 -1/2
¢ =M can result in AKP nucleation if they can reach beyondWldth is proportional toe_""+ €, 7%

Let us now switch on a smalli>0. Thee front Eq.(22)

the positive inflection point ap=(3M*"+¢)/3 or is slowly moving on. If¢ were not conserved, theé front
, . € 2 ~y would follow moving in step withe front leaving no kinks
M-/ M+ 3 ~(¢%). (19 behind[7]. For our conserve this is not possible, kinks

must inevitably appear. To see in detail how it happens, let
us substitutes(t,x) =H(x—uvt)+ (t,x) with y=0(v) to

Eqg. (1) and keep onlyD(v) terms. We are interested in large
length scales as compared to the width of the $tép) and
that of thee front. That is why we keep only up to the second
& derivative, which is responsible for diffusion. Far from

To first order in|e|/M? nucleation can take place far>
—(TM?)?5=—¢ . According to this estimate, nucleation
becomes possible whed(t) in Eq. (14) is approaching the
critical 3M? from below.

In fast transitions there may be not enough time for th

nucleation to actually happen. We will estimate the nucle-~vt We obtain

ation time as follows. The CHC equationat —¢,, can be _ .

approximated by Pry)=e ' (ty)+vg'(ty) +v \/fﬁ(t)ﬁ(y),
Gip=—VP+ e Vip+VE. (20) (23

wherey=x—uvt. We take into account &-like source term
aty=0 that is a long-wavelength approximationubl . We
also sete_=¢€,./2 for simplicity. The source term is
switched on at=0 when thee front starts to move, hence
the Heaviside function. The solution of E@®3) is straight-
forward,

The relaxation time ak,= ,, which corresponds to the
correlation length, is~e, . ¢, 2 is the time scale for AKP
nucleation whene=3M?—¢,,. At a later time andk closer
to the critical 3VI? the nucleation time is longer. If the nucle-
ation times;2 is longer than the time 7 remaining to the
transition [the time (t) needs to grow from BI?—¢, to

3M?], then there is not enough time for any AKP’s nucle- e [t exp—[y+u(t—t')]2de, (t—t'))
w(t,y)=v TJ dt’ .
0

ation. This condition is satisfied when
Vame (t—1)
7(TM?)%5< 1., (21) (24
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The source term produces at y=0 at a constant rate. It blows up, the fluctuations are small. According to NSE, the
spreads around by diffusion but at the same time it is carriethduced velocity is formally proportional to the fluctuation
to negativey with velocity —v. For y>0, the diffusion squared. When this velocity is substituted back to CHCE, it
dominates at first but at’t>~ €, t the two processes balance gives a term that is formally cubic in order parameter fluc-
one another ang/(t,y>0) saturates. From this time on all tuations. This term has the same formal order of magnitude
the ¢ is carried directly from the source §0<0 with veloc-  as the usual nonlinear term in our E@). For the same

ity —v. This means that the front is halted, while thee reasons it can be neglected at the onset of the spinodal de-
front keeps moving on. A supercooled phase with a slightlycomposition. If the viscosity of the fluid is large, then the
positive ¢ is growing in between them with velocity.  usual cubic term dominates. The domain wall structure at the
When its width exceeds2/e,, ¢ decays towards positive €nd of spinodal decomposition is the same as if there were
ground state. From this time on, we have a negatfvstep  No hydrodynamic flows at all. If, on the other hand, viscosity
moving together withe step and the whole story repeats is small, then the “hydrodynamic” cubic term is the domi-

itself at spatial intervals oé. /v. Density of kinks is nant one. It halts the spinodal decomposition somewhat ear-
lier than it would be halted by the standard nonlinearity. This
N~ v for v—0. (25) can give only negligible logarithmic correctionskdecause
€4

t [see Eq.(10)], is the time of the double exponential

It should be stressed that the whole process is deterministi®/Ow-up in the power spectrum of E¢). The ordered do-
kinks are made at regular intervals. Noise is required to bemains at the end of the spinodal decompositionf,asre

gin the process; it also adds some irregularity on top of thenetastabld10]. 1/k gives the initial size of the domains in

regular pattern. this metastable state. In both large and small viscosity limits
Note that for smalb, the relevant length scale is. /v.  the correlations at the end of spinodal decomposition stage

For small enougv, it far exceeds the-front width and the 56 getermined bi. Hydrodynamics is irrelevant when ini-

width of H(x). This justifies the sharp step in EQ2) and iy density of domain walls is considered.

t_he long-wavelength approximations involved in our deriva- Hydrodynamics is even less relevant in an effectively

tion of Eq. (23). one-dimensional binary fluid system. This limit can be

Let us now turn to the opposite largetimit where we  gchieved for binary fluids trapped in a thin tube whose di-

anticipate the transition to be effectively homogeneous. Anyameter is less thani/In one dimension the incompressibil-
generice(t,x) can be linearized aroune=0, P

ity condition Vu=0 makes impossible any nontrivial flow
vi—X d the model reduces to just CHCE
t,X)= = t—X). 26 an . . X ] ’ .
e(t.x) T a(v ) 26 In one dimension, kinks can be thermally activated at ar-
bitrarily low temperatures. Still, our scaling relations hold if

the freeze-out at takes place outside the Ginzburg regime,
< e where the thermal kink nucleation is exponentially sup-
momentumk=7~">. For pressed. If the freeze-out happens above the Ginzburg tem-

v>a® or v>7 %6 (27)  perature, then there is possibility of crossovérdoes not

] ] i diverge withT— o0 but saturates at a finite value. This case is
this momentum scale is much bigger than the sle@ad the  interesting in its own right but requires further investigation.
relevant field fluctuations do not feel the inhomogeneity. |t should be possible to test our prediction in a two-

At any fixedx, the transition proceeds at the rate of just,
as in Eq.(3). If it were homogeneous it would enhance the

Eq. (12) applies. work on POK in binary fluids was done in two dimensions
(2D). In 2D it may be difficult to distinguish between spin-
V. CONCLUDING REMARKS odal decomposition stage and POK stage. However, the scal-

Our calculations predict domain wall density at the end of "9 exponents for early POK are known and can be used to

the spinodal decomposition stage. This is the initial densitgXtrapolate the length scale backttoAn extrapolation like
for phase-ordering kinetic®OK) process described in Ref. this was used in numerical simulations of vortex formation in
[8]. 2D, see Fig. 3 in Refl11].

For binary fluids in more than one dimension hydrody-
namic processes are known to be important for phase-
ordering kinetics, see, e.49]. Hydrodynamics can be intro- ACKNOWLEDGMENTS
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